
ICT167 Assignment 2 1 Semester 2, 2020

MURDOCH UNIVERSITY
ICT167 Principles of Computer Science

Semester 2, 2020

Assignment 2 (worth 25% for the unit)

Due Date: Midnight, Friday on Teaching Week 12 (30 October 2020)

All Students: Submit the Assignment via LMS by the due date. Make sure you click on Submit when
you have uploaded your file to complete the submission.

Late penalty: 10% per day penalty for delayed submissions unless prior extension of deadline is
obtained from the unit coordinator.

You should keep a copy of your work. Your submission must include a completed assignment cover
sheet. An electronic copy of the assignment cover sheet is available at the unit LMS site.

Note: You can only use ArrayList for this assignment

You may be asked by your tutor to explain your submission. Make sure you understand everything you are
submitting.

Read and understand the information at: http://our.murdoch.edu.au/Educational-technologies/What-
you-need-to-know/ - pay extra attention on Academic Misconduct section

Question

First, you need to design, code in Java, test and document a base class, Student. The Student class will
have the following information, and all of these should be defined as Private:

A. Title of the student (eg Mr, Miss, Ms, Mrs etc)

B. A first name (given name)

C. A last name (family name/surname)

D. Student number (ID) – an integer number (of type long)

E. A date of birth (in day/month/year format – three ints) - (Do NOT use the Date class from
JAVA)

The student class will have at least the following constructors and methods:

(i) two constructors - one without any parameters (the default constructor), and one with
parameters to give initial values to all the instance variables.

(ii) only necessary set and get methods for a valid class design.

(iii) method to write the output of all the instance variables in the class to the screen (which will
be overridden in the respective child classes, as you have more instance variables that
required to be output).

(iv) an equals method which compares two student objects and returns true if they have the same
student names, and the same date of birth, otherwise it returns false.

You may add other methods in the Student class as you see appropriate.

ICT167 Assignment 2 2 Semester 2, 2020

Design, code in Java, test and document (at least) three classes – a CourseWorkStudent class, a
ResearchStudent class (which both derive from the Student class) and a Client program.

For coursework students:

(a) There are two assignments, each marked out of a maximum of 100 marks and equally weighted.
The marks for each assignment are recorded separately.

(b) There is weekly practical work. The marks for this component are recorded as a total mark
obtained (marked out of a maximum of 20 marks) for all practical work demonstrated during the
semester.

(c) There is one final examination that is marked out of a maximum of 100 marks and recorded
separately.

(d) An overall mark (to be calculated within the class)

(e) A final grade, which is a string (think of a way to avoid code duplication for calculating this)

The final grade, for coursework students, is to be awarded on the basis of an overall mark, which is a
number in the range 0 to 100 and is obtained by calculating the weighted average of the student's
performance in the assessment components. The criteria for calculating the weighted average is as
defined below:

The two assignments together count for a total of 50% (25% each) of the final grade, the
practical work is worth 20%, and the final exam is worth 30% of the final grade.

For research students:

(a) There is a proposal component (marked out of a maximum of 100 marks).

(b) One final oral presentation (marked out of a maximum of 20 marks).

(c) One final thesis (marked out of a maximum of 100 marks).

(d) An overall mark (to be calculated within the class)

(f) A final grade, which is a string (think of a way to avoid code duplication for calculating this)

The final grade, for research students, is to be awarded on the basis of an overall mark, which is a
number in the range 0 to 100 and is obtained by calculating the weighted average of the student's
performance in the assessment components. The criteria for calculating the weighted average is as
defined below:

The proposal component is worth 30% of the final grade, the final oral presentations are worth
a total of 10%, and the final thesis is worth 60% of the final grade

A grade is to be awarded for coursework and research students as follows: An overall mark of 80 or
higher is an HD, an overall mark of 70 or higher (but less than 80) is a D, an overall mark of 60 or
higher (but less than 70) is a C, an overall mark of 50 or higher (but less than 60) is a P, and an overall
mark below 50 is an N.

The client program will allow entry of these data for several different student into an ArrayList and
then perform some analysis and queries.

Your client class (program) will provide the user with a menu to perform the following operations.
You will need to think of a way to ask the user whether they are dealing with the coursework student
or research student. You will also need to load the information of the students from a text file
(student.txt) before displaying the menu.

ICT167 Assignment 2 3 Semester 2, 2020

1. Quit (exit the program)

2. Add (to the ArrayList) all the marks information about a coursework or research student by
reading it from another text file and determine the student’s overall mark and grade.

You will need to consider how to deal with the different assessment components for the
coursework and research students. You may use two different text files, each for coursework
students and another for research students. The program should read the correct text file for
this purpose.

Use Exception Handling if the student cannot be found in the ArrayList.

3. Given student number (ID), remove the specified student and relevant information from the
ArrayList. It is always good to ask the user to confirm again before removing the record. For
confirmation, output the student number (ID) and the name to the user.

4. Output from the ArrayList the details (all information including the overall mark and the
grade) of all students currently held in the ArrayList.

5. Compute and output the overall mark and grade for coursework or research students

6. Determine and display how many coursework or research students obtained an overall mark
equal to or above the average overall mark and how many obtained an overall mark below the
average overall mark

7. Given a coursework or research student number (ID), view all details of the student with that
number. If the student is not found in the ArrayList, an appropriate error message is to be
displayed

8. Given a coursework or research student’s name (both surname and given name – ignoring
case), view all details of that student. If the student is not found in the ArrayList, an
appropriate error message is to be displayed. If more than one student having the same name,
display all of them.

9. Sort the ArrayList of the student objects into ascending order of the students’ numbers (IDs),
and output the sorted array - implement an appropriate sorting algorithm for this, and explain
why such algorithm is selected (in internal and external documentation).

10. Output the sorted ArrayList from (9) to a CSV file.

Note that the program will loop around until the user selects the first option (Quit).

Set up a student ArrayList of N student objects, and test it with N = 10 (at least). You have to
store your test data in a file so that your program can read them.

The client class should be well-structured and should have the essential methods in addition to the
main method.

The interaction with the user can be via the command line (i.e., no graphical user interface is
expected).

Devise suitable test data to test all sections of program code. You will need to provide all the test data
used.

Your program should also include a method (e.g., StudentInfo()) to output your student details
(name, student number, mode of enrolment, tutor name, tutorial attendance day and time) at the start
of program results.

Note: The question requires you to use an ArrayList. Also, the sorting algorithm used must be
coded within your program and not called from any Java libraries. You should not use any
Java libraries for sorting algorithm, date and output to CSV file (e.g. FileWriter). You are
required to use only materials covered in the lecture notes and the textbook to complete this
assignment.

ICT167 Assignment 2 4 Semester 2, 2020

Distribution of marks for assessment
An approximate distribution of marks for assessment is given below. The question will be marked out
of 100 as follows:

Correct solution design and implementation: 75 marks
(which includes the design and implementation of classes as specified in the question above;
programming style, use of comments, use of methods, parameters, input validation, readability,
presentation of output etc.)

External Documentation (problem specification, pseudocode, program limitations, program
testing and test results, program listings, etc.): 25 marks

Required internal documentation (i.e. in the source code):

• a beginning comment clearly stating title, author, date, file name, purpose and any assumptions or
conditions on the form of input and expected output;

• other comments giving useful low-level documentation and describing each component;
• well-formatted readable code with meaningful identifier names and blank lines between

components (like methods and classes).
• See https://www.oracle.com/technical-resources/articles/java/javadoc-tool.html#examples

of using the Javadoc comments

Required External Documentation:

1. Title: a paragraph clearly stating title, author, date, file names, and one-line statement of purpose.

2. Requirements/Specification: a paragraph giving a brief account of what the program is supposed
to do. State any assumptions or conditions on the form of input and expected output.

3. User Guide: include clear instructions on how to access, compile and run the program.

4. Structure/Design/Algorithm: Outline the design of your program. Give a written description,
use diagrams (eg, UML Class Diagram) and use pseudocode for algorithms.

5. Limitations: Describe program shortfalls (if any), eg, the features asked for but not implemented,
the situations it cannot handle etc.

6. Testing: Provide a thorough test plan (the more systematic, the better) and any errors noticed in
your tests. You will need to provide reasons of the test plan and strategy you have adopted.
Document exactly what are working and what are not working with explanations.

Provide the set of test data used (in tabular form) with expected results. Each test data must be
justified – reason for selecting that data. No marks will be awarded unless justification for each
test data is provided.

Note that a copy of the sample test data and results from a program run is required (copy
from the program output window and paste to a Word file). Your submitted test results
should demonstrate a thorough testing of the program.

Use the following example tables.

Test Table
A set of test data in tabular form with expected results and desk check results from your
algorithm. Each test data must be justified – reason for selecting that data. No mark will be
awarded unless justification for each test data is provided.

Add rows to the following table as needed. Table can span more than one page. Each test id tests only
one condition for the desk check.

ICT167 Assignment 2 5 Semester 2, 2020

Test
id

Test description/justification –
what is the test for and why
this particular test.

Actual
data for
this test

Expected
output

Actual
desk check
result
when desk
check is
carried
out

Desk
check
outcome –
Pass/Fail

1
2
3
4

Results of Program Testing
Results of applying your test data to your final program (tabular form), including a sample
printout of your program in operation.

Add rows to the following table as needed. Table can span more than one page.

Each test id tests only one situation for the test run of the program. Table is copy/paste of the desk check with
actual output column showing results of the program output. There should be no duplicated reasons listed in
the second column.

Test
id

Test description/justification
– what is the test for and why
this particular test.

Actual
data for
this test

Expected
output

Actual
program
output
when test is
carried out

Test run
outcome –
Pass/Fail

1
2
3
4

After the above test table, copy/paste sample printouts of your program in operation. You can screen
capture and paste here. Make sure you label each printout with the correct Test id.

7. Source program listings: save all your Java source code in a document in MS Word format.

All of the above external documentation must be included in that order in a file saved in MS Word
format.

It is also necessary to submit all Java source code of your programs (i.e., all classes that you have
designed and implemented). You should develop the programs using the NetBeans IDE. It will make
it easy to collect sample output. The whole NetBeans project should be submitted.

The external documentation together with the NetBeans project folder containing all classes for the
program must be compressed in a .zip file before submitting. Make sure that all necessary files are
submitted so that the programs can be viewed, compiled and run successfully.

The final version of the program should compile and run under Java SE 8 and NetBeans IDE 8.0 (or
later version). You will need to specify exactly which version you use in the documentation.

